Discriminative Feature Metric Learning in the Affinity Propagation Model for Band Selection in Hyperspectral Images
نویسندگان
چکیده
Traditional supervised band selection (BS) methods mainly consider reducing the spectral redundancy to improve hyperspectral imagery (HSI) classification with class labels and pairwise constraints. A key observation is that pixels spatially close to each other in HSI have probably the same signature, while pixels further away from each other in the space have a high probability of belonging to different classes. In this paper, we propose a novel discriminative feature metric-based affinity propagation (DFM-AP) technique where the spectral and the spatial relationships among pixels are constructed by a new type of discriminative constraint. This discriminative constraint involves chunklet and discriminative information, which are introduced into the BS process. The chunklet information allows for grouping of spectrally-close and spatially-close pixels together without requiring explicit knowledge of their class labels, while discriminative information provides important separability information. A discriminative feature metric (DFM) is proposed with the discriminative constraints modeled in terms of an optimal criterion for identifying an efficient distance metric learning method, which involves discriminative component analysis (DCA). Following this, the representative subset of bands can be identified by means of an exemplar-based clustering algorithm, which is also known as the process of affinity propagation. Experimental results show that the proposed approach yields a better performance in comparison with several representative class label and pairwise constraint-based BS algorithms. The proposed DFM-AP improves the classification performance with discriminative constraints by selecting highly discriminative bands with low redundancy.
منابع مشابه
Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملTarget Detection Improvements in Hyperspectral Images by Adjusting Band Weights and Identifying end-members in Feature Space Clusters
Spectral target detection could be regarded as one of the strategic applications of hyperspectral data analysis. The presence of targets in an area smaller than a pixel’s ground coverage has led to the development of spectral un-mixing methods to detect these types of targets. Usually, in the spectral un-mixing algorithms, the similar weights have been assumed for spectral bands. Howe...
متن کاملکاهش ابعاد دادههای ابرطیفی به منظور افزایش جداییپذیری کلاسها و حفظ ساختار داده
Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017